Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply

  • Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).


    Google Scholar
     

  • Food and Agriculture Data Statistics (FAOSTAT) (FAO, 2022).

  • The State of World Fisheries and Aquaculture: Sustainability in Action (FAO, 2020).

  • Bowles, N., Alexander, S. & Hadjikakou, M. The livestock sector and planetary boundaries: a ‘limits to growth’ perspective with dietary implications. Ecol. Econ. 160, 128–136 (2019).


    Google Scholar
     

  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Kernebeek, H. R., Oosting, S. J., Van Ittersum, M. K., Bikker, P. & De Boer, I. J. Saving land to feed a growing population: consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 21, 677–687 (2016).


    Google Scholar
     

  • Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. R. Soc. Interface 12, 20150891 (2015).

    PubMed 

    Google Scholar
     

  • Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).


    Google Scholar
     

  • van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).


    Google Scholar
     

  • Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    ADS 

    Google Scholar
     

  • Billen, G. et al. Reshaping the European agro-food system and closing its nitrogen cycle: the potential of combining dietary change, agroecology, and circularity. One Earth 4, 839–850 (2021).

    ADS 

    Google Scholar
     

  • Van Zanten, H. H., Van Ittersum, M. K. & De Boer, I. J. The role of farm animals in a circular food system. Glob. Food Sec. 21, 18–22 (2019).


    Google Scholar
     

  • Van Kernebeek, H. R. J., Oosting, S. J., Van Ittersum, M. K., Ripoll-Bosch, R. & De Boer, I. J. M. Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 12, 1755–1765 (2018).

    PubMed 

    Google Scholar
     

  • Van Selm, B. et al. Circularity in animal production requires a change in the EAT–Lancet diet in Europe. Nat. Food 3, 66–73 (2022).


    Google Scholar
     

  • Govoni, C. et al. Global assessment of natural resources for chicken production. Adv. Water Res. 154, 103987 (2021).


    Google Scholar
     

  • Devendra, C. & Sevilla, C. C. Availability and use of feed resources in crop–animal systems in Asia. Agric. Syst. 71, 59–73 (2002).


    Google Scholar
     

  • Luciano, A., Espinosa, C. D., Pinotti, L. & Stein, H. H. Standardized total tract digestibility of phosphorus in bakery meal fed to pigs and effects of bakery meal on growth performance of weanling pigs. Anim. Feed Sci. Technol. 284, 115148 (2021).


    Google Scholar
     

  • Ertl, P., Zebeli, Q., Zollitsch, W. & Knaus, W. Feeding of by-products completely replaced cereals and pulses in dairy cows and enhanced edible feed conversion ratio. J. Dairy Sci. 98, 1225–1233 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Karlsson, J., Spörndly, R., Lindberg, M. & Holtenius, K. Replacing human-edible feed ingredients with by-products increases net food production efficiency in dairy cows. J. Dairy Sci. 101, 7146–7155 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Global Livestock Environmental Assessment Model Version 2.0 (FAO, 2017).

  • Wirsenius, S. Human Use of Land and Organic Materials: Modeling the Turnover of Biomass in the Global Food System (Chalmers Univ. of Technology, 2000).

  • Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tacon, A. G. J. & Hasan, M. R. Feed Ingredients and Fertilizers for Farmed Aquatic Animals: Sources and Composition (FAO, 2009).

  • Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1–10 (2015).


    Google Scholar
     

  • Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, J. O. & Röös, E. Resource-efficient use of land and animals—environmental impacts of food systems based on organic cropping and avoided food–feed competition. Land Use Policy 85, 63–72 (2019).


    Google Scholar
     

  • Scarlat, N., Martinov, M. & Dallemand, J. F. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manage. (Oxf.) 30, 1889–1897 (2010).


    Google Scholar
     

  • Karlsson, J. et al. Future Nordic Diets: Exploring Ways for Sustainably Feeding the Nordics Vol. 2017566 (Nordic Council of Ministers, 2017).

  • FishStatJ—Software for Fishery and Aquaculture Statistical Time Series, version 3.04.12. (FAO Fisheries and Aquaculture Department, 2020).

  • Tacon, A. G. J., Hasan, M. R. & Metian, M. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans: Trends and Prospects FAO Fisheries and Aquaculture Technical Paper No. 564 (FAO, 2011).

  • Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Hal, O. Upcycling Biomass in a Circular Food System: The Role of Livestock and Fish (Wageningen Univ., 2020).

  • Monteiro, M., Matos, E., Ramos, R., Campos, I. & Valente, L. M. P. A blend of land animal fats can replace up to 75% fish oil without affecting growth and nutrient utilization of European seabass. Aquaculture 487, 22–31 (2018).

    CAS 

    Google Scholar
     

  • Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinotti, L., Giromini, C., Ottoboni, M., Tretola, M. & Marchis, D. Review: insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal 13, 1365–1375 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pinotti, L. et al. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 294, 126290 (2021).


    Google Scholar
     

  • Liu, Y., Jha, R., Stein, H. H. & North Central Coordinating Committee on Swine Nutrition (NCCC-42). Nutritional composition, gross energy concentration, and in vitro digestibility of dry matter in 46 sources of bakery meals. J. Anim. Sci. 96, 4685–4692 (2018).

  • Giromini, C. et al. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Addit. Contam. A 34, 1436–1445 (2017).

    CAS 

    Google Scholar
     

  • Shurson, G. C., Urriola, P. E. & Ligt, J. L. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound. Emerg. Dis. 69, 4–30 (2022).

    PubMed 

    Google Scholar
     

  • Dou, Z., Galligan, D. & Shurson, G. Food waste as untapped resources for climate mitigation. In The Role of Agricultural Science and Technology in Climate 21 Project Implementation, pp. 14–17 (Council for Agricultural Science and Technology, 2021).

  • Zu Ermgassen, E. K., Phalan, B., Green, R. E. & Balmford, A. Reducing the land use of EU pork production: where there’s swill, there’s a way. Food Policy 58, 35–48 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • EC 1069/2009 Commission Regulation (EC) No. 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No. 1774/2002 (Animal By-products Regulation) (European Commission, 2009).

  • EC 142/2011 Commission Regulation (EU) No. 142/2011 Implementing Regulation (EC) No. 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-products and Derived Products Not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border under That Directive (European Commission, 2011).

  • EC 1372/2021 Commission Regulation (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No. 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-ruminant Farmed Animals, Other Than Fur Animals, with Protein Derived from Animals (European Commission, 2021).

  • Bindelle, J., Leterme, P. & Buldgen, A. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnol. Agron. Soc. Environ. 12, 69–80 (2008).

    CAS 

    Google Scholar
     

  • Čolović, D., Rakita, S., Banjac, V., Đuragić, O. & Čabarkapa, I. Plant food by-products as feed: characteristics, possibilities, environmental benefits, and negative sides. Food Rev. Int. 35, 363–389 (2019).


    Google Scholar
     

  • Fry, J. P. et al. Environmental health impacts of feeding crops to farmed fish. Environ. Int. 91, 201–214 (2016).

    PubMed 

    Google Scholar
     

  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).


    Google Scholar
     

  • Zijlstra, R. T. & Beltranena, E. Swine convert co-products from food and biofuel industries into animal protein for food. Anim. Front. 3, 48–53 (2013).


    Google Scholar
     

  • Shi, C., Zhang, Y., Lu, Z. & Wang, Y. Solid-state fermentation of corn–soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 8, 50 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawood, M. A. O. & Koshio, S. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac. 12, 987–1002 (2019).


    Google Scholar
     

  • Pires, A. J. V., Carvalho, G. G. P. D. & Ribeiro, L. S. O. Chemical treatment of roughage. Rev. Bras. Zootec. 39, 192–203 (2010).


    Google Scholar
     

  • Muscat, A., Olde, E. M., Boer, I. J. & Ripoll-Bosch, R. The battle for biomass: a systematic review of food–feed–fuel competition. Glob. Food Sec. 25, 100330 (2020).


    Google Scholar
     

  • Herrero, M. et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 5, e50–e62 (2021).

    PubMed 

    Google Scholar
     

  • Tacon, A. G. J. & Metian, M. Fishing for aquaculture: non-food use of small pelagic forage fish—a global perspective. Rev. Fish. Sci. 17, 305–317 (2009).


    Google Scholar
     

  • Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).


    Google Scholar
     

  • EC COM/2020/98 Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A New Circular Economy Action Plan for a Cleaner and More Competitive Europe (European Commission) (2020).

  • Government Resolution on the Strategic Programme for Circular Economy (Ministry of the Environment, Finland, 2021).

  • Mehmood, M. A. et al. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 9, 3–21 (2017).


    Google Scholar
     

  • Valentine, J. et al. Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4, 1–19 (2012).


    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    CAS 

    Google Scholar
     

  • Food Balance Sheets: A Handbook (FAO, 2001).

  • Pig Cost of Production in Selected Countries (ADHB Market Intelligence, 2015).

  • Pig Cost of Production in Selected Countries (ADHB Market Intelligence, 2019).

  • Jackson, A. Fish in–fish out ratios explained. Aquac. Eur. 34, 5–10 (2009).


    Google Scholar
     

  • On-Farm Feeding and Feed Management in Aquaculture (FAO, 2013).

  • García-Condado, S. et al. Assessing lignocellulosic biomass production from crop residues in the European Union: modelling, analysis of the current scenario and drivers of interannual variability. GCB Bioenergy 11, 809–831 (2019).


    Google Scholar
     

  • Gertenbach, W. D. & Dugmore, T. J. Crop residues for animal feeding. S. Afr. J. Anim. Sci. 5, 49–51 (2004).


    Google Scholar
     

  • Ronzon, T., Piotrowski, S. & Carus, M. DataM—Biomass Estimates (v3): A New Database to Quantify Biomass Availability in the European Union (Institute for Prospective and Technological Studies, 2015).

  • Iram, A., Cekmecelioglu, D. & Demirci, A. Distillers’ dried grains with solubles (DDGS) and its potential as fermentation feedstock. Appl. Microbiol. Biotechnol. 104, 6115–6128 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lynch, K. M., Steffen, E. J. & Arendt, E. K. Brewers’ spent grain: a review with an emphasis on food and health. J. Inst. Brew. 122, 553–568 (2016).

    CAS 

    Google Scholar
     

  • Technical Conversion Factors for Agricultural Commodities: Commodity Trees (FAO, 1996).

  • Global Food Losses and Food Waste—Extent, Causes and Prevention (FAO, 2011).

  • FAO Yearbook: Fishery and Aquaculture Statistics 2008 (FAO, 2010).

  • FAO Yearbook: Fishery and Aquaculture Statistics 2019 (FAO, 2019).

  • Shepherd, C. J. & Jackson, A. J. Global fishmeal and fish-oil supply: inputs, outputs and markets—global production of fishmeal and fish-oil. J. Fish Biol. 83, 1046–1066 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevens, J. R., Newton, R. W., Tlusty, M. & Little, D. C. The rise of aquaculture by-products: increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 90, 115–124 (2018).


    Google Scholar
     

  • Animal Feed Resources Information System (Feedipedia, 2021).

  • Feedtables (INRA-CIRAD-AFZ, 2021).

  • Cho, J. H. & Kim, I. H. Fish meal—nutritive value. J. Anim. Physiol. Anim. Nutr. 95, 685–692 (2011).

    CAS 

    Google Scholar
     

  • Frempong, N. S., Nortey, T. N., Paulk, C. & Stark, C. R. Evaluating the effect of replacing fish meal in broiler diets with either soybean meal or poultry by-product meal on broiler performance and total feed cost per kilogram of gain. J. Appl. Poult. Res. 28, 912–918 (2019).

    CAS 

    Google Scholar
     

  • Zier, C. E., Jones, R. D. & Azain, M. J. Use of pet food-grade poultry by-product meal as an alternate protein source in weanling pig diets. J. Anim. Sci. 82, 3049–3057 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    ADS 

    Google Scholar
     

  • Hardy, R. W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac. Res. 41, 770–776 (2010).

    CAS 

    Google Scholar
     

  • Woyengo, T. A., Beltranena, E. & Zijlstra, R. T. Nonruminant nutrition symposium: controlling feed cost by including alternative ingredients into pig diets—a review. J. Anim. Sci. 92, 1293–1305 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Jarrett, S. & Ashworth, C. J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 9, 1–11 (2018).

    CAS 

    Google Scholar
     

  • Fadel, J. G., DePeters, E. J. & Arosemena, A. Composition and digestibility of beet pulp with and without molasses and dried using three methods. Anim. Feed Sci. Technol. 85, 121–129 (2000).

    CAS 

    Google Scholar
     

  • Puhakka, L., Jaakkola, S., Simpura, I., Kokkonen, T. & Vanhatalo, A. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage-based diets. J. Dairy Sci. 99, 7993–8006 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ramin, M., Höjer, A. & Hetta, M. The effects of legume seeds on the lactation performance of dairy cows fed grass silage-based diets. Agric. Food Sci. 26, 129–137 (2017).

    CAS 

    Google Scholar
     

  • Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Vanhatalo, A. & Jaakkola, S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J. Dairy Sci. 102, 7102–7117 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Degola, L. & D, J. The influence of dietary inclusion of peas, faba bean and lupin as a replacement for soybean meal on pig performance and carcass traits. Agron. Res. 16, 389–397 (2018).


    Google Scholar
     

  • Koivunen, E., Tuunainen, P., Valkonen, E., Rossow, L. & Valaja, J. Use of faba beans (Vicia faba L.) in diets of laying hens. Agric. Food Sci. 23, 165–172 (2014).


    Google Scholar
     

  • Koivunen, E. et al. Digestibility and energy value of pea (Pisum sativum L.), faba bean (Vicia faba L.) and blue lupin (narrow-leaf) (Lupinus angustifolius) seeds in broilers. Anim. Feed Sci. Technol. 218, 120–127 (2016).


    Google Scholar
     

  • Code of Federal Regulations Title 21: Food and Drugs, Chapter I: Food and Drug Administration, Department of Health and Human Services, Subchapter E: Animal Drugs, Feeds and Related Products, Part 589: Substances Prohibited from Use in Animal Food or Feed, Subpart B: Listing of Specific Substances Prohibited from Use in Animal Food or Feed, Sec. 589.2001: Cattle Materials Prohibited in Animal Food or Feed to Prevent Transmission of Bovine Spongiform Encephalopathy (US Food and Drug Administration, 2020).

  • Good Practices for the Feed Sector—Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding: FAO Animal Production and Health Manual (FAO and IFIF, 2020); https://doi.org/10.4060/cb1761en

  • R Core Team. R: A Language and Environment for Statistical Computing v.4.0.5 (R Foundation for Statistical Computing, 2021).

  • Next Post

    Insights on the Pet Sitting Global Market to 2030 -

    Mon Sep 19 , 2022
    Dublin, Sept. 19, 2022 (GLOBE NEWSWIRE) — The “Pet Sitting Market Size, Share & Trends Analysis Report by Pet Type (Dogs, Cats), by Service Type (Care Visits, Drop-in Visits), by Region (Asia Pacific, North America, MEA, Europe, LATAM), and Segment Forecasts, 2022-2030” report has been added to ResearchAndMarkets.com’s offering. The […]
    Insights on the Pet Sitting Global Market to 2030 –

    You May Like